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based on equidistribution principles as originally intro-
duced by White [23]. Previous contributions in this areaThis paper proposes a method of lines solution procedure with

time and space adaptation for one-dimensional systems of partial include Sanz-Serna and Christie [20] and Revilla [16] who
differential equations whose solutions display steep moving fronts. study the numerical solution of the cubic Schrödinger equa-
The spatial remeshing algorithm, which is a variation of the method tion (CSE) in one spatial dimension. Their experiments
published by Sanz-Serna and Christie and an extension suggested

demonstrate clearly the benefits of the adaptation in space,by Revilla, is a static remeshing method based on equidistribution
resulting in a reduction of the number of nodes by a factorprinciples. The selection of the several algorithm components, i.e.,

grid placement criterion, spatial discretization scheme, time inte- 4 to 12 (depending on the example considered and on the
grator, adaptation frequency, and parameter tuning, are investi- choice of the function to be equidistributed) in comparison
gated and illustrated with several test examples, i.e., the cubic to that required by similar fixed-grid methods.
Schrödinger equation, a model of a single-step reaction with diffu- Starting with the spatial remeshing technique proposedsion, and a model of flame propagation. Q 1996 Academic Press, Inc.

by those authors, we explore several important issues in-
cluding the selection of a grid placement criterion, the
choice of a spatial discretization scheme, the time integra-1. INTRODUCTION
tion, the grid adaptation frequency, and the tuning of the
parameters used in the algorithm. With regard to theseThe numerical study of one-dimensional systems of evo-
points, the results of a large number of numerical experi-lutionary partial differential equations (PDEs) whose solu-
ments are discussed, and several departures from the con-tions display steep moving fronts has demonstrated the
clusions of Sanz-Serna and Christie [20] and Revilla [16]need for numerical solution procedures with time and
are highlighted. In particular, our experiments show thatspace adaptation. In recent years, the interest in spatial
the selection of a spatial discretization scheme has a sig-remeshing techniques has increased enormously (see, e.g.,
nificant influence on the quality of the numerical solution,[2, 5, 8]). These techniques use nonuniform grids and, as
and a discretization employing higher-order finite differ-time evolves, automatically concentrate the grid points in
ences allows the number of nodes to be further reducedthe spatial regions where the solution is rapidly changing.
by a factor up to two and reduces the computationalAmong the large variety of spatial remeshing techniques,
costs significantly.two major approaches can be distinguished depending on

As a result of these investigations, a numerical schemethe way—continuously in the time domain or only at dis-
is proposed which makes use of the implicit RK solvercrete time levels—the grid moves.
RADAU5 [7] for the integration in time and of a newlyIn this study, we consider the discrete time level (or
developed spatial remeshing routine called AGE (adaptivestatic) approach, and we investigate a class of methods
gridding through equidistribution). The complete Fortran
programs are available on request from the authors.1 Author to whom correspondence should be addressed. E-mail:

vdw@autom.fpms.ac.be. This paper is organized as follows. Section 2 introduces
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the MOL solution procedure along with the grid adaptation 3. THE SPATIAL REMESHING ALGORITHM
mechanism. Section 3 deals with the spatial remeshing

Sanz-Serna and Christie [20] and Revilla [16] have devel-technique and describes the structure of the algorithm. In
oped an efficient method for moving the nodes which isSection 4, several spatial discretization schemes, including
based on the equidistribution of some appropriate func-cubic spline differentiators and finite differences, are con-
tional, e.g., the arc-length of the solution. The computationsidered and their relative merits are highlighted. Section
of the nonuniform grid xk

i , i 5 1, ..., N, occurs at discrete5 discusses several aspects related to the time integration,
time levels tk and between two time levels tk and tk11 5e.g., initialization procedure and grid adaptation fre-
tk 1 Dt; the solution is advanced on this fixed grid by aquency, and compares two standard ODE solvers, e.g.,
suitable space-time discretization of the PDEs (steps 1, 2LSODI [10] and RADAU5 [7]. In Section 6, the solution
defined in Section 2).procedure is applied to a variety of soliton solutions of the

The algorithm proposed by Sanz-Serna and Christie [20]CSE, i.e., the propagation of a single soliton, the interaction
is based on the equidistribution of the arc-length of thebetween two solitons, and the bound state of several soli-
solution, i.e., at the time level tk11 , the nodes xk11

i , i 5 1, ...,tons. Performance of the solution procedure is also illus-
N, are located such thattrated with examples of another nature, i.e., a model of a

single-step reaction with diffusion and a model of flame
propagation. Exk11

i

xk11
i21
S1 1 I­u(x, tk11)

­x I2

2

D1/2

dx P constant, (3.1)
2. THE BASIC SOLUTION PROCEDURE

The MOL solution of an initial-boundary value problem where u(x, tk11) is the PDE solution which has been ad-
using spatial remeshing is split into four separate tasks: vanced to the time tk11 using the fixed grid xk

i , i 5 1, ...,
N. In fact, the criterion is not used in this form, but with(1) the spatial discretization of the PDEs using finite
a positive parameter a which can be used to modify thedifference or finite element approximations on a fixed non-
relative importance of values of x and values of u, i.e.,uniform grid,

(2) the time integration of the resulting system of stiff
ODEs using an established solver, Exk11

i

xk11
i21
Sa 1 I­u(x, tk11)

­x I2

2

D1/2

dx P constant. (3.2)
(3) the adaptation of the spatial grid,
(4) the interpolation of the solution to produce new

initial conditions. In his paper [16], Revilla points out that this choice of
the equidistributed function leads to the location of anIn the following sections, we focus attention on steps
excessive number of nodes in regions where the solution(1)–(4) and, based on the grid adaptation algorithm devel-
is linear and proposes another equidistribution principleoped by Sanz-Serna and Christie [20] and Revilla [16], we
based on the second derivative of the solution instead ofpropose several further extensions and improvements. An
the first derivative, i.e.,essential feature of this procedure is that the grid adapts

only at discrete time levels and no coupling exists between
the computation of the PDE solution and the grid adapta- Exk11

i

xk11
i21
Sa 1 I­2u(x, tk11)

­x2 I
2

D1/2

dx P constant (3.3)tion. Thus, the grid adaptation algorithm is problem inde-
pendent and can be coded once and for all. The discrete
time level (or static) approach contrasts with continuously
moving grid (or dynamic) techniques, a well known exam- which results in a further improvement of the scheme.

An additional parameter b is introduced to avoid theple of which is the moving finite element method intro-
duced by Miller and Miller [13, 14]. In this second ap- excessive clustering of nodes in regions where i­2u/­x2i2

is large, i.e., the values of the second derivatives whichproach, the nodes move according to ODEs which are
coupled to the problem equations. While these techniques exceed b are reduced to the value b.

In this study, the grid adaptation algorithm has beenhave proven very successful in the solution of problems
displaying very steep gradients, algorithms which move implemented and tested using both forms of the equidistri-

bution principle. As pointed out by Revilla, we have alsothe grid continuously in the space-time domain are more
complicated to derive and result in larger, usually ill-condi- observed that the use of the criterion (3.3) leads to a better

grid distribution and allows the number of nodes to betioned, sets of nonlinear ODEs to be integrated in time.
Uncoupling the computations of the PDE solution and the further reduced. Following this observation and the idea

of Dwyer et al. in an earlier study [3], who suggested usinggrid is the major advantage of the discrete time level ap-
proach. both first- and second-order derivatives in order to define
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the grid placement criterion, we have selected two criteria show that the selection of a discretization scheme does
have a significant influence on the performance of thein the forms
solution procedure.

In this work, several spatial approximations have beenExk11
i

xk11
i21
Sa 1 I­2u(x, tk11)

­x2 I
y

D1/2

dx P constant considered:

(a) cubic spline differentiators for first- and second-(3.4a)
order derivatives on a nonuniform grid as implemented in
subroutine NCSPLE of the DSS/2 MOL library developedExk11

i

xk11
i21
Sa 1 I­u(x, tk11)

­x I2

y

1 I­2u(x, tk11)
­x2 I

y

D1/2

dx P constant. by Schiesser [21],

(b) finite difference approximations for derivatives up(3.4b)
to any order and up to any level of accuracy on a nonuni-
form grid as implemented in the subroutine Weights byThe criterion (3.4a) is the same as (3.3) except that, by
Fornberg [4].using the y norm instead of the 2 norm, the nodes now

move according to the value of the largest component of Cubic spline differentiators for second-order derivatives
the derivative vectors, i.e., they follow the solution compo- have the same level of accuracy as three-point finite differ-
nent which is more rapidly changing. The idea behind the ences and lead to similar performance. On the other hand,
criterion (3.4b) is to weight the flat part and the slope in the use of an approximation scheme with a higher level of
a solution differently, so that some nodes are drawn from accuracy, i.e., method (b), allows the number of nodes
the curvature to the slope. In this case, a parameter b, required for the spatial approximation of the CSE to be
which now limits the effect of both first and second deriva- further reduced by a factor up to two as compared to
tives, is used to avoid an excessive grid distortion. In the the numerical results reported by Revilla. Actually, the
majority of test problems considered, the numerical selection of a spatial differentiator seems more important
scheme based on (3.4b) seems to be slightly less expensive at step 1 of the solution procedure, i.e., the spatial approxi-
but also slightly less accurate than the one based on (3.4a). mation of the PDEs, than for computing the derivatives
Anyway, the differences observed when using (3.4b) rather involved in the grid adaptation criterion (step 3). This
than (3.4a) are marginal when compared to the benefits observation is logical since, as mentioned by Sanz-Serna
obtained when using (3.4a) rather than (3.2), which shows and Christie, the grid point positions and the solution val-
that the second order derivative is the most important ues do not play a symmetric role. It is sufficient to move
information to be used in a grid placement criterion, and the nodes in a way which allows for a satisfactory spatial
that, in fact, the slope in a solution does not require more discretization of the PDEs, and not necessary to obtain
nodes than the flat part. The influence of the grid placement very accurately any prescribed set of nodes. Accordingly,
criterion and the tuning parameters (i.e., the number of cubic spline differentiators, as implemented in NCSPLE,
nodes N, the scaling factor a, and the limiting factor b) have been used in the grid adaptation subroutine AGE.
on the performance of the algorithm will be illustrated with On the other hand, a fourth-order accurate scheme for
several test examples in Section 6. The spatial remeshing approximating the spatial derivatives in the CSE seems
algorithm has been coded in portable Fortran in subroutine appropriate and yields better algorithm performance. The
AGE and is available on request from the authors. use of the several spatial approximations is illustrated in

Section 6 wherein several test examples are considered.
4. THE SPATIAL DISCRETIZATION SCHEMES

5. THE TIME INTEGRATION
Numerical approximations of spatial derivatives are nec-

essary for transforming the PDEs into a set of ODEs (step The spatial discretization of an initial-boundary value
problem results in a set of stiff ODEs which must be inte-1) and for computing the equidistribution principle which

involves the first- and/or second-order derivatives of the grated in time (step 2). In the space/time adaptive algo-
rithm of Sanz-Serna and Christie, an implicit midpoint rulesolution (step 3). In their work, Sanz-Serna and Christie

[20] and Revilla [16] make use of a three-point finite differ- is used for the integration in time and a new spatial grid
is computed at each variable time step taken by the timeence scheme for spatial discretization. They also experi-

ment with a piecewise linear Galerkin method and obtain integrator. In our approach, the time integration is halted
and the spatial grid is updated periodically, either at speci-similar performance. Hence, they conclude that finite dif-

ferences and finite elements on the adaptive grid provide fied discrete time levels tk 5 k Dt or after a fixed number
nsteps of integration steps. This procedure has beenthe same accuracy and that, when the grid adapts to the

solution, most algorithms work well. However, this conclu- adopted because it is not required to adapt the spatial grid
at each time step in order to obtain good accuracy and, insion seems a bit premature, and our numerical experiments
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fact, larger grid adaptation periods can be considered. nodes is obtained after a single call to subroutine AGE so
it is not necessary to iterate the procedure.Thus, in the implementation described in this paper, the

grid adaptation frequency is a tuning parameter of the After every nsteps integration steps, a nonuniform grid
is computed (step 3), and the solution is interpolated (stepalgorithm which can be chosen so that the grid adapts well

without an excessive amount of computation time spent 4) using cubic splines as implemented in subroutine
NCSPLE [21] in order to generate new initial conditionson computing the spatial grid and interpolating the solu-

tion. Both adaptation mechanisms, i.e., grid adaptation at for the next time interval.
When using a variable-order BDF method as imple-specified time levels tk or after a fixed number of integration

steps, have been used and the second method has finally mented in LSODI, the integration must be restarted with
a first-order method, i.e., the parameter ISTATE ofbeen selected. As discussed by Adjerid and Flaherty [1],

updating the grid after a fixed number of integration steps LSODI is set equal to 1 to reset the BDF formulas to first
order, so that no past history of the dependent variablesrather than at fixed times reduces the chance of having a

rapid transient suddenly appear and disappear between is required. However, the implementation of the space/
time adaptive algorithm in this manner decreases the effi-two grid adaptation times, which could result in inaccurate

solutions being accepted as correct. The time steps taken ciency of LSODI because there are many restarts and the
solver uses low-order BDF most of the time. In fact, theby the ODE solver will become smaller when the solution

is changing more rapidly, and the grid will adapt more performance of LSODI will greatly depend on the fre-
quency of grid updating, which in turn depends on thefrequently. Moreover, we have observed that when the

grid is updated at specified time levels tk 5 k Dt, there is an problem to be solved and the accuracy requirements. When
the problem is not very demanding, the number of integra-interplay between the number of nodes and the adaptation

period Dt, which makes the tuning of the adaptive algo- tion steps after which a new grid is computed can be rela-
tively large so that LSODI can increase the order andrithm more difficult. Actually, as Dt does not vary with the

speed of the solution, the number of nodes must be larger perform satisfactorily. In general, however, LSODI is not
an optimal choice of solver for this type of application andthan strictly needed to represent the solution. Otherwise

the adaptation period Dt should be chosen smaller and the an implicit RK method as implemented in RADAU5 is
more appropriate.method overall becomes less efficient.

In this study, the initial value problem resulting from A pseudo-Fortran description of the MOL solution pro-
cedure is given in Fig. 1 and statistics for both solvers arespatial discretization is handled as a system of differential

algebraic equations (DAEs), i.e., ODEs come from the illustrated in the next section.
spatial approximation of the PDEs, and AEs may result
from the approximation of the boundary conditions. Two 6. NUMERICAL EXPERIMENTS
standard solvers have been used in combination with our

The numerical techniques described in the previous sec-spatial remeshing technique, and their performances have
tions are now applied to a variety of soliton solutions of thebeen compared:
CSE, i.e., the propagation of a single soliton, the interaction

(a) the variable-step, variable-order, backward differ- between two solitons, and the bound state of several soli-
entiation formulas (BDF) solver LSODI (Hindmarsh tons. Performance of the solution procedure is also illus-
[10]), and trated with examples of another nature, i.e., a model of a

single-step reaction with diffusion and a model of flame(b) the variable-step, fifth-order, implicit Runge–
propagation.Kutta (RK) solver RADAU5 (Hairer and Wanner [7]).

6.1. Cubic Schrödinger EquationThe space/time adaptive algorithm proceeds as follows:
Initially, the nodes x0

i , i 5 1, ..., N, are distributed uni- During recent years, a great deal of interest has devel-
formly in the spatial domain. Then a call to subroutine oped in the numerical treatment of PDEs giving rise to
AGE is made in order to adapt the grid according to the solitary waves (or solitons). In this paper, we consider an
initial condition u0(x). Actually, computation of this initial important particular case, namely, the CSE in one spatial
nonuniform grid is required to successfully start the time dimension given by
integration, i.e., LSODI or RADAU5 usually fail to con-
verge when the integration is started using the uniform
grid which contains a purposely small number of nodes. i

­u
­t

1
­2u
­x2 1 quu2uu 5 0, 2y , x , y

u(x, 0) 5 u0(x),

(6.1)This initialization procedure, which is also suggested by
Sanz-Serna and Christie [20], does not need to be iterated
as opposed to the comments of those authors, i.e., in all
the examples considered, a satisfactory distribution of the where u(x, t) is a complex-valued function of space and
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­v
­t

1
­2w
­x2 1 q(v2 1 w2)w 5 0 (6.4)

­w
­t

2
­2v
­x2 2 q(v2 1 w2)v 5 0 (6.5)

v(x, 0) 5 u0R(x) w(x, 0) 5 u0I(x) (6.6)

v(xL , t) 5 v(xR , t) 5 0 w(xL , t) 5 w(xR , t) 5 0 (6.7)

where u0(x) 5 u0R(x) 1 iu0I(x).

6.1.1. Propagation of a single soliton. The initial condi-
tion u0 is given by

u0(x) 5 Ï2a/q exp[i0.5s(x 2 x0)] sech[Ïa(x 2 x0)] (6.8)

and the corresponding soliton solution is

u(x, t) 5 Ï2a/q exp[i(0.5s(x 2 x0)
2 (0.25s2 2 a)t)] sech[Ïa((x 2 x0) 2 st)]

(6.9)

The modulus uu(x, t)u represents a wave initially centered
at x 5 x0 , whose amplitude Ï2a/q is determined by the
real parameter a, and which propagates with speed s in
the positive direction of x. Note that the soliton travels
without change of shape.

As in [16, 19, 20] the problem is solved for q 5 1, a 5
FIG. 1. Pseudo-Fortran description of the MOL solution procedure. 1, s 5 1, and x0 5 0. The artificial boundaries are located

at xL 5 230, xR 5 70, and the time interval of interest is
(0, 30).

In order to assess the influence of the grid placement
time and q is a real parameter. This equation has been

criterion, of the choice of a spatial discretization scheme,
used extensively to model nonlinear dispersive waves (see

and of the parameter tuning of the algorithm on the perfor-
Strauss [22] and Whithman [24]).

mance of the MOL solution procedure, the problem is
For the numerical treatment of the CSE (see, e.g., [6, 9,

solved using several variations of the adaptive algorithm.
16, 17, 18, 19, 20]), we assume that, for the time interval

Version 1 uses the grid placement criterion (3.4a) based
0 # t # T under consideration, the solution vanishes out-

on the second-order derivative. The spatial derivatives in
side some interval (xL , xR), and we introduce the artificial

the PDEs (6.4), (6.5) are approximated by three-point cen-
Dirichlet boundary conditions

tral finite differences. Version 2 uses the same grid place-
ment criterion but approximates the spatial derivatives

u(xL , t) 5 u(xR , t) 5 0 (6.2) using five-point central finite differences. Version 3 uses
the grid placement criterion (3.4b), which combines first-
and second-order derivatives, and approximates the spatialwhich is a reasonable approximation for the solutions we
derivatives by five-point finite differences. In all threeare interested in. Alternatively, Neuman boundary condi-
cases, the solution is computed with a 5 1024 and b 5 100tions (ux 5 0, x 5 xL and x 5 xR) could be considered.
(in fact, for this example, numerical experiments show thatFurthermore, the complex-valued function u(x, t) is de-
the limitor b has no influence on the results as long as b .composed into its real and imaginary parts
10, i.e., as long as b is larger than the maximum computed
value of i­2u/­x2i). The time integration is performed using

u(x, t) 5 v(x, t) 1 iw(x, t) (6.3) RADAU5 with relative and absolute error tolerances set
to 1027 and a frequency of grid adaptation nsteps 5 10.
Version 4 is the same as version 2 except the time integra-so that (6.1), (6.2) lead to a set of two PDEs with initial

and boundary conditions for the real functions v(x, t) and tion is performed using LSODI with error tolerances set
to 1027 and a frequency of adaptation nsteps 5 10. Tightw(x, t),
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TABLE I for information only. All computations were done on a
Pentium 133.Propagation of a Single Soliton 22 Norm of the Error 3 102

It is apparent from Table I that the solution obtained
Version N t 5 5 t 5 10 t 5 15 t 5 20 t 5 25 t 5 30 with version 1 is less accurate than the one obtained with

version 2, i.e., the selection of a spatial discretization
1 51 0.681 1.19 0.568 2.52 3.27 4.07 scheme significantly influences the accuracy of the numeri-
1 151 0.0513 0.106 0.165 0.227 0.295 0.369 cal solution. To obtain similar accuracy with version 1, it
2 31 1.13 1.18 1.69 2.23 2.99 4.29

is necessary to use at least 151 nodes, which significantly2 41 0.356 0.497 0.515 0.517 0.672 0.740
increases the computational load. Version 2 and version 32 51 0.227 0.195 0.134 0.352 0.151 0.346

3 31 1.82 2.18 2.13 2.22 3.06 3.87 have been used with different number of nodes, e.g., N 5
3 41 0.612 0.765 0.794 0.898 1.24 1.16 31, 41, 51, in order to illustrate the convergence properties
3 51 0.282 0.359 0.486 0.465 0.534 0.535 of the method. These results illustrate that the grid place-
4 51 0.132 0.202 0.291 0.318 0.385 0.392 ment criteria (3.4a), (3.4b) give similar performances. De-

pending on the number of nodes, one or the other of the
solutions can be slightly more accurate or less expensive.
Finally, the use of version 4 shows that LSODI does not

tolerances are used for the time integration so that the perform as well as RADAU5 on this problem, a predict-
spatial errors dominate. The results of the computation able conclusion in view of the large number of restarts
using the four different versions are presented in Tables which reduce the efficiency of the multistep method.
I and II. Results in Table I illustrate the evolution of the The known analytical solution (6.9) and the numerical
2 norm of the error in the numerical solution, as compared results obtained with version 2 and N 5 51 are compared
to the theoretical solution (6.9), given by in Fig. 2, where the solution is graphed every 5 units in t.

The location of the adaptive nodes is indicated at the bot-
tom of the figure. The grid adapts well, and the computed
solution follows almost exactly the theoretical solution.

ierrori2 5 SS 1
(xR 2 xL) O

N21

i51

(xi11 2 xi)
2

(error(xi)2 1 error(xi11)2)D1/2
(6.10) Finally, Table III presents some computational statistics

corresponding to the case of the soliton moving through
the spatial domain at different speeds, e.g., s 5 1, 2, 3, 4. The
time interval of interest (0, TF) is inversely proportional to

and computed at several output times t 5 5, 10, 15, 20, the speed of the soliton, so that the final location of the
25, 30. soliton is x 5 30 in all cases. Table III gives the evolution

Table II presents some computational statistics: N is of the 2 norm of the error in the numerical solution in
the number of nodes, STEPS is the number of time steps this final location. These results, which are computed with
needed to complete the solution (RADAU5, IWORK(16); versions 2 and 3 (N 5 51), show that the grid adaptation
LSODI, IWORK(11)), FNS is the number of function eval- frequency increases with the speed of the soliton, and so
uations (RADAU5, IWORK(14); LSODI, IWORK(12)), the number of grid updates only slightly decreases with
JACS is the number of Jacobian evaluations (RADAU5, version 2 and remains more or less the same with version
IWORK(15); LSODI, IWORK(13)), and CPU is the com- 3. However, we observe in both cases that the accuracy
putation time including some I/O costs, which is given level of the numerical solution slightly decreases as the

speed of the soliton is increased.
This example illustrates the advantage of a procedure

based on a grid adaptation after a fixed number of integra-TABLE II
tion steps as compared to an adaptation at specified time

Propagation of a Single Soliton—Computational Statistics levels tk 5 k Dt. In this latter case, the tuning parameter
Dt must be reduced proportionally to the speed of theVersion N STEPS FNS JACS CPU (s)
soliton, which requires a priori knowledge about the so-

1 51 3056 16759 332 171 lution.
1 151 3499 18451 349 1871

6.1.2. Interaction between two solitons. The parameters2 31 1893 10867 441 62
a and s are independent and so two initial wave profiles2 41 2030 11655 402 100

2 51 1733 10231 367 125 can propagate with different amplitudes and speeds. Thus,
3 31 1807 10554 424 56 we consider an initial condition which is the superposition
3 41 1741 10254 380 85 of two solitons with amplitudes a1 and a2 , respectively,
3 51 1436 8761 357 117

centered at x01 and x02 , and traveling with different speeds4 51 9400 366825 3435 357
s1 and s2 :
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FIG. 2. Propagation of a single soliton—Analytical solution (solid line) and numerical solution (circled points) at t 5 0, 5, ..., 30; five-point
finite differences; equidistribution principle (3.4a) with N 5 51, a 5 1024, b 5 100, nsteps 5 10.

the previous section with N 5 51, a 5 1024, b 5 100,u0(x) 5 Ï2a1/q exp[0.5is1(x 2 x01)] sech[Ïa1(x 2 x01)]
1 Ï2a2/q exp[0.5is2(x 2 x02)] sech[Ïa2(x 2 x02)]. and nsteps 5 10. Table IV presents some computational

statistics. Figures 3 through 5 show the results of the evolu-(6.11)
tion of the two interacting solitons at t 5 10, 25, and 45,
respectively, which have been obtained with version 2. TheAs time evolves, the faster soliton catches the slower
results at t 5 25 obtained with version 1 are graphed inone and passes through it. A remarkable property is that
Fig. 6, which clearly shows that the selection of a spatialthe shape and velocity of both solitons are unaltered after
discretization scheme significantly influences the accuracythe interaction; the only effect is a phase shift.
of the numerical solution. In his paper [16], Revilla dis-As a further illustration, we consider this problem with
cusses also the problem of the interaction between twoq 5 1, a1 5 0.2, a2 5 0.5, s1 5 1, s2 5 0.1, x01 5 0, and
solitons and found that 101 nodes are necessary. Note that,x02 5 25. The artificial boundaries are located at xL 5 220,
on a fixed uniform grid, 401 nodes are required [19].xR 5 80, and the time span of interest is (0,45). The CSE

In addition, Fig. 7 illustrates the evolution of the stepsizeis solved using versions 1–3 of the algorithm described in
taken by RADAU5. It is apparent that the stepsize, and
thus the adaptation period, is automatically reduced when
the two solitons interact.TABLE III

Propagation of a Single Soliton—Computational Statistics and 6.3.3. Bound state of several solitons. Miles [12] has
2 Norm of the Error 3 102

Version s STEPS FNS JACS error at x 5 30

TABLE IV
2 1 1733 10231 367 0.346
2 2 1362 7976 253 1.45 Interaction of Two Solitons—Computational Statistics
2 3 1298 7518 227 2.73
2 4 1241 7189 190 4.51 Version STEPS FNS JACS CPU (s)
3 1 1436 8761 357 0.535
3 2 1445 8549 266 1.53 1 2303 13447 322 164

2 1549 8766 324 1373 3 1497 8603 211 4.27
3 4 1544 8850 166 5.46 3 1082 6325 296 105
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FIG. 3. Interaction between two solitons at t 5 10—five-point finite differences; equidistribution principle (3.4a) with N 5 51, a 5 1024, b 5

100, nsteps 5 10.

FIG. 4. Interaction between two solitons at t 5 25—five-point finite differences; equidistribution principle (3.4a) with N 5 51, a 5 1024, b 5

100, nsteps 5 10.
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FIG. 5. Interaction between two solitons at t 5 45—five-point finite differences; equidistribution principle (3.4a) with N 5 51, a 5 1024, b 5

100, nsteps 5 10.

FIG. 6. Interaction between two solitons at t 5 25—three-point finite differences; equidistribution principle (3.4a) with N 5 51, a 5 1024, b 5

100, nsteps 5 10.
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FIG. 7. Interaction between two solitons—evolution of the stepsize taken by RADAU5.

shown that for q 5 2N 2 (where N is a positive integer) better on the time interval considered, but the accuracy
still decreases gradually, indicating that the instability isand an initial condition given by
only postponed and will eventually show up.

In conclusion, we observe that our space/time adaptiveu0(x) 5 sech(x), (6.12)
algorithm, when applied to this test problem on a longer
time interval, suffers from numerical instabilities. Theu(x, t) is a bound state of N solitons.
source of instability is not clear to us and this issue, whichAs in [16, 19, 20], q 5 18, the time span of interest is
was not addressed in [16, 20], would require more investi-(0,1), and the artificial boundaries are located at xL 5 220,
gation.xR 5 20. Versions 1–3 are used to solve this problem with

We mention here that we have observed similar prob-the parameter values N 5 41, a 5 0.005, b 5 100, and
lems when solving this test example with the moving collo-

nsteps 5 10. The numerical results obtained at t 5 0.98 cation code MOVCOL [11] by Huang and Russel. This
using version 3 are graphed in Fig. 8 and Table V presents method is a dynamic remeshing strategy in which the move-
some computational statistics. In his paper [16], Revilla ment of the nodes is governed by a (moving mesh) PDE
proposes an adaptive solution of this problem which re- which is derived from equidistribution principles. To solve
quires 101 nodes. Note that, on a fixed uniform grid, 1281 the bound state of three solitons, we have selected a moni-
nodes are required [19]. tor function based on the second-order derivative, an adap-

Although these results seem very satisfactory, this diffi- tive grid of 41 points, and the default values of the method
cult test problem, the solution of which develops very steep parameters (no attempt has been made to adjust these
spatial and temporal gradients, highlights the limitations parameters). In this case, the numerical results are very
of our numerical scheme. As a further test, we solve the satisfactory for short times, but the accuracy decreases
problem on a longer time interval (0, 4) using the same gradually until t 5 2, after which the results very rapidly de-
parameter values and we observe that the accuracy of the teriorate.
numerical solution gradually deteriorates. This is illus- At this stage, more work should be done in order to
trated in Fig. 9, where the numerical results are graphed analyze these observations.
every 0.2 unit in t. We were not able to improve the effi-

6.2. A Model of a Single-Step Reaction with Diffusionciency of the method by tuning the algorithm parameters,
unless the number of nodes is increased. Figure 10 illus- This example has been treated numerically by Adjerid
trates the numerical results obtained with an adaptive grid and Flaherty in [1] and by Petzold in [15]. The problem is

described byof 101 points. In this latter case, the numerical results are
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FIG. 8. Bound state of three solitons at t 5 0.98—five-point finite differences; equidistribution principle (3.4b) with N 5 41, a 5 0.005, b 5

100, nsteps 5 10.

from t 5 0.2 to 0.29 at time intervals of 0.01 (before t 5
0.2, the temperature increases gradually and the curves

­T
­t

5
­2T
­x2 1 D(1 1 k 2 T)e2d/T, 0 , x , 1, t . 0

Tx(0, t) 5 0, T(1, t) 5 1, T(x, 0) 5 1, 0 # x # 1
have been omitted in order to obtain a clearer picture)

(6.13)

and is compared to a reference solution obtained with 101
adaptive grid points. For comparison purposes, we mention

where D 5 Red/kd. that this problem is solved in [1] using a moving finite
The problem is solved on a time interval (0, 0.29) and element technique with local refinement and a maximum

for the parameter values k 5 1, d 5 20, R 5 5. For short of 34 elements are required. So, this example demonstrates
times, the temperature gradually increases from unity with that our algorithm is competitive with other adaptive tech-
a maximum at x 5 0. Suddenly an ignition occurs and the niques.
temperature at x 5 0 rapidly increases to 1 1 k. A steep
front then forms and propagates towards x 5 1 with a 6.3. A Model of Flame Propagation
speed proportional to ekd/2(1 1 k). The problem reaches

We consider a model of flame propagation proposed bya steady state once the front propagates to x 5 1.
Dwyer and Sanders and treated numerically in severalThis problem is solved using versions 1–3 with the pa-
papers, e.g., [15]. This model consists of two coupled equa-rameter values N 5 21, a 5 0.05, b 5 1000, and nsteps 5
tions for mass density and temperature which are given by10. Table VI presents some computational statistics. In

Fig. 11, the solution obtained with version 2 is graphed ­r

­t
5

­2r

­x2 2 NDAr,

­T
­t

5
­2T
­x2 1 NDAr, 0 , x , 1, t . 0

(6.14)
TABLE V

Bound State of Three Solitons—Computational Statistics

where NDA 5 3.52 3 106e24/T.
Version STEPS FNS JACS CPU (s) The initial conditions are

1 2265 12956 362 118
r(x, 0) 5 1, T(x, 0) 5 0.2, 0 # x # 1 (6.15)2 2079 11574 344 117

3 1098 6305 297 75
The boundary conditions are
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FIG. 9. Bound state of three solitons from t 5 0 to t 5 4 at time intervals of 0.2—five-point finite differences—Equidistribution principle (3.4b)
with N 5 41, a 5 0.005, b 5 100, nsteps 5 10.

with the parameter values N 5 51, a 5 0.001, b 5 1000,rx(0, t) 5 0, Tx(0, t) 5 0, t $ 0
rx(1, t) 5 0, T(1, t) 5 f(t)

(6.16)
and nsteps 5 10 are compared in Figs. 12 and 13 with a
reference solution obtained with 151 adaptive grid points.
The time interval of interest is (0, 0.006) and the solutionwhere
is graphed at intervals of 0.0006. Some computational sta-
tistics are presented in Table VII. In [15], a solution tof(t) 5 0.2 1 t/2 3 1024, t # 2 3 1024

5 1.2, t $ 2 3 1024. this problem is computed using an adaptive mesh strategy
which combines two mechanisms: a Lagrangian method
based on minimizing the time rate of change of the solutionThe heat source at x 5 1 generates a flame front which

propagates from right to left at a relatively high speed. in the moving coordinates and a refinement procedure (i.e.,
grid points are added or deleted after every time step)The density and temperature computed using version 2

FIG. 10. Bound state of three solitons from t 5 0 to 4 at time intervals of 0.2—five-point finite differences; equidistribution principle (3.4b)
with N 5 101, a 5 0.005, b 5 100, nsteps 5 10.
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TABLE VI (a) The grid movement is directly attached to the equi-
distribution in space of an a priori chosen functional whichSingle Step Reaction with Diffusion—Computational Statistics
is based on the second-order derivative of the solution.

Version STEPS FNS JACS CPU (s) This criterion is easy to implement and to work with, i.e.,
the adaptive algorithm can be coded once and for all and

1 601 3596 190 4 the parameter tuning consists essentially in the choice of
2 561 3406 191 4 the number of grid points N and the scaling factor a.3 542 3266 167 4

(b) Following a method of line formulation, spatial
discretization is required to transform the PDE problem
into a set of DAEs. In contrast to the comments of Sanz-
Serna and Christie and Revilla, we have found that thewhich equidistributes a mesh function based on the first-
selection of a spatial discretization scheme has a significantand second-order derivatives of the solution. A numerical
influence on the efficiency of the solution procedure. Insolution to the flame propagation problem is proposed
the test examples considered, the use of higher-order finitewhich makes use of a maximum of 56 grid points. Our
differences allows the number of grid points, and conse-algorithm is probably not as efficient as this adaptive mesh
quently the computational load, to be significantly reduced.strategy (the number of time steps taken is significantly

(c) Better performance has been obtained by updatinglarger in our case), but is considerably simpler.
the grid periodically, i.e., after a fixed number of integra-
tion steps, rather than by updating the grid alternatively,7. CONCLUDING REMARKS
i.e., at each time step taken by the time integrator. Time
integration is efficiently performed using the implicit RKAlthough a great deal of interest has developed in spatial
solver RADAU5 [7].remeshing techniques over the past several years, only

a few methods are available yet in the form of library (d) Numerical experiments have been carried out with
five different test examples, including several soliton solu-components of MOL packages. In this paper, we investi-

gate a class of methods based on equidistribution princi- tions of the CSE, a model of a single step reaction with
diffusion, and a model of flame propagation. These exam-ples, and particularly, the method published by Sanz-Serna

and Christie [20] and the extension proposed by Revilla ples illustrate the effectiveness of our space/time adap-
tive procedure.[16]. The following points are discussed:

FIG. 11. Temperature from t 5 0.2 to 0.29 at time intervals of 0.01—five-point finite differences; equidistribution principle (3.4a) with N 5 21,
a 5 0.05, b 5 1000, nsteps 5 10.
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FIG. 12. Flame density from t 5 0 to t 5 0.006 at time intervals of 0.0006—five-point finite differences; equidistribution principle (3.4a) with
N 5 51, a 5 0.001, b 5 1000, nsteps 5 10.

FIG. 13. Flame temperature from t 5 0 to 0.006 at time intervals of 0.0006—five-point finite differences; equidistribution principle (3.4a) with
N 5 51, a 5 0.001, b 5 1000, nsteps 5 10.
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